FSDA

GitHub top language GitHub release (latest by date) GitHub code size in bytes View FSDA on File Exchange Documentation

Hits Build Status CircleCI Build Status

codecov GitHub contributors Maintenance

Flexible Robust Statistics Data Analysis

This project hosts the source code to the original MATLAB FileExchange project and is place of active development.

FSDA Toolbox™ provides statisticians, engineers, scientists, researchers, financial analysts with a comprehensive set of tools to assess and understand their data. Flexible Statistics Data Analysis Toolbox™ software includes functions and interactive tools for analyzing and modeling data, learning and teaching statistics.

The Flexible Statistics Data Analysis Toolbox™ supports a set of routines to develop robust and efficient analysis of complex data sets (multivariate, regression, clustering, …), ensuring an output unaffected by anomalies or deviations from model assumptions.

In addition, it offers a rich set interactive graphical tools which enable us to explore the connection in the various features of the different forward plots.

All Flexible Statistics Data Analysis Toolbox™ functions are written in the open MATLAB® language. This means that you can inspect the algorithms, modify the source code, and create your own custom functions.

For the details about the functions present in FSDA you can browse the categorial and alphabetical list of functions of the toolbox inside MATLAB (once FSDA is installed) or at the web addresses http://rosa.unipr.it/FSDA/function-cate.html and http://rosa.unipr.it/FSDA/function-alpha.html

FSDA

FSDA is developed for wide applicability. For its capacity to address problems focusing on anomalies in the data, it is expected that it will be used in applications such as anti-fraud, detection of computer network intrusions, e-commerce and credit cards frauds, customer and market segmentation, detection of spurious signals in data acquisition systems, in chemometrics (a wide field covering biochemistry, medicine, biology and chemical engineering), in issues related to the production of official statistics (e.g. imputation and data quality checks), and so on.

For more information see the Wiki page at https://github.com/UniprJRC/FSDA/wiki

Ways to familiarize with the FSDA toolbox